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Rigorous results for the diffusive contact processes in d 3 
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Bunkyo-!a, Tokyo 112. Japan 

Received 20 January 1994, in final form 30 August 1994 

AbstracL The diffusive contm process is an interacting particle system an the d-dimensional 
hypercubic lattice. Bach site can be occupied by, at most, one particle and each particle can do 
the following three things. (i) At rate 1 a particle will be annihilated. (ii) At late A a particle 
will give birth to a new particle at one of its 2d neighbour sites, if it is vacated. (iii) At rate D 
a pa ic le  will hop to one of its 2d nei hbour sites, if it is vacated. For each D > 0, there is a 
critical value d d ’ ( D )  so that for A c A, 6 ( D )  all particles will be annihilated with probability 1 
while for A > ALd)(D) particles will survive with a positive probability even in the limit t -t m. 
In the present paper the lower and upper bounds for ddp’ (D)  are given (theorems 1.1 and 1.2) 
and a lower bound for the density of particles is given in the case A > ALdl(D) (theorem 2.2). 
when the dimensionality d > 3. Rigorous results wncluded from these theorems are shown. 
The crossover phenomenon for large D is discussed for the three-dimensional case. 

1. Introduction 

In the present paper we study the interacting particle system which we call the diffusive 
contact process (DCP). This is a combination of the basic contact process (BCP) of Harris 
(1974) and the exclusion process with nearest-neighbour hopping (see, for example, Liggett 
1985 ch VU). The DCP has two parameters A and D. by which the creation rate of the 
contact process and the diffusion rate are determined, respectively. It is proved that the 
process shows two different types of long-term behaviour depending on these parameters. 
We will give some rigorous results on the phase diagram in the (A, D)-plane when the 
spatial dimensionality d 2 3. 

At first we explain the BCP in order to introduce the problem which we will consider in 
this paper. The BCP cg is a continuous-time Markov process defined on the d-dimensional 
hypercubic lattice Zd.  At each site x E Zd, a variable & ( x )  takes values 0 and 1, representing 
a vacancy and a particle, respectively. Each particle can do two different things: (i) at rate 1 
a particle will be annihilated; (ii) at rate 2dh a particle will create a new particle and will 
choose one site at random from the 2d nearest-neighbour sites. If the chosen site is not 
occupied by another particle, then the new particle i s  sent to the site. However, if it is 
already occupied by a particle, then this creation process is suppressed. There is a critical 
value hjd) for d a 1 so that for h 6 Aid) all particles will be annihilated after a sufficiently 
long time for any initial state (extinction ofthe process), however for h z hLd) particles will 
survive with a positive probability at any time for any non-empty initial state (survival ofthe 
process), where the empty state means the one with all sites vacated. As a matter of course, 
the critical value is determined by the balance between the creation rate and the annihilation 
rate. The difficulty comes from the fact that the effective value of the creation rate depends 
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on the surrounding particle configuration. If all the nearest-neighbour sites of a site x are 
vacated, the rate at which a new particle is created and sent from x to some of its neighbours 
is 2dh (a bare value). However, if some of the nearest-neighbour sites are occupied, then the 
rate is reduced. For example, if n nearest-neighbours are occupied, then the total creation 
rate is (2d - n)h. It should be remarked that the probability to find just n particles in the 
nearest-neighbour sites of x depends not only on the particle configuration at x but also on 
the configuration at the sites which are the next-nearest-neighbours of x .  In other words, 
the effective value of the creation rate is usually less than 2dh and the dependence on A 
may be nonlinear. This is the reason why the exact value of Alp’ is not yet known even for 
d = I .  The reviews of the BCP are given by Liggett (1985) and Durrett (1988, 1991a). 

In this paper, we introduce a diffusion process into the BCP. In the DCP each particle 
moves to one of its nearest-neighbour sites with rate D ,  if the chosen neighbour site is not 
occupied by another particle. The problem is to find how the critical value depends on 
the rate D ,  that is, to determine h$d’(D). When D is so large, a new particle will diffuse 
so quickly to infinity and the creation rate will remain at the bare value. Then, in the 
limit D -+ CO, the critical value would be determined by the following simple balance: 
2dA = 1, which implies l im~, ,h~~)(D)  = 1/(2d) .  How about the case D < CO? We 
expect ALd)(D) to be a decreasing function of D ,  however, it is not trivial. For example, 
consider the situation in which a new particle is created by a particle at x .  This particle 
will diffuse but cannot reach infinity within a finite time period, and it will remain at some 
site, y .  This will reduce the creation rate of particles at the neighbouring sites of y .  The 
monotonicity of hLd)(D) as a function of D has not yet been proved. 

This diffusive particle system was studied by mean-field-type approximations by Katori 
and Konno (1992) and Matsuda er al(1992). Matsuda el al(1992) introduced the DCP as a 
model of population dynamics of interacting species of organisms, where the diffusion rate 
D means the migration rate of each individual. Jensen and Dickman (1993) studied the 
one-dimensional DCP in detail using the time-dependent perturbation theory and by Monte 
Carlo simulations. References to the field-theoretical approach to the DCP are given in 
Jensen and Dickman (1993). 

By using the submodularity of the survival probability of the process, the present 
author and Konno (1992) proved the following lower bound of the critical value Aid)@) 
for any dimensions d 2 1. It should be remarked that we called the DCP the single 
annihilation model (SAM) to emphasize the difference from the multi-particle annihilation 
models (Dickman 1989, 1990, Katori and Konno 1993). 

Theorem 1.1 (Katori and Konno 1992). Assume that d > 1 and let 

1 + (2d - l)D 
h f ’ ( D )  = 

(Zd - 1)(1+ 2dD) ’ 

Then for any D 2 0, 

h f ’ ( D )  < Ai4(D) (1.2) 

In the present paper we give the following upper bound when the dimensionality d 2 3. 

Theorem 1.2. Assume that d > 3 and let 

. . ,_ 

+,/(G(d)(O, 0 )  - 4dD)Z + 16dD(2 - G(4(O, O))] 
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Figure 1. The numerical values of the lower and upper bounds of AP'CD) given by theorems 
1.1 and 1.2 are shown for d = 3. The exact values of hid)(D) should be between these two 
curves, It should be remded that both bounds are decreasing in D and have the same asymptote 
A = 1/2d in the limit D + 00. 

where G ( d ) ( ~ ,  y)  is the Green function for the simple random walk on Zd. Then for any 
D a O  

h L d ) ( ~ )  < # ) ( D ) .  (1.4) 

This upper bound (1.3) is an extension for the diffusive case ( D  z 0) of the bound of 
Griffeath (1983) for the BCP ( D  = 0): AAd) = h:d)(0) < G(d)(0,0)/2d(2 - G(d)(O,O)) 
for d 3. Figure 1 shows the numerical values of the bounds for d = 3, where 
G(3)(0,0)  = 4&/z2 x r($)r(4)r($)r($) N 1.5163860591 (see, for example, 
Itzykson and Drouffe 1989, p 21). 

As shown by figure 1 both bounds are decreasing in D and have the same asymptote 
h = 1/2d in the limit D + 00. This fact proves the above-mentioned expectation, 
l i m ~ + ~ A i ~ ) ( D )  = 1/2d. Since the value 1/2d is given by a simple mean-field-type 
approximation, we often call it the mean-field value. Moreover, we can conclude from the 
above theorems that the correction of h\.1"(D) to the mean-field value 1/2d is proportional 
to D-' when D >> 1, if d 

Corollary 1.3. If d 2 3, then 

3. 

1 
2d hid)(D) - - = dd)D-' + CJ(D-*) for D >> 1 (1.5) 

where 
1 < c(d)  < -(G'd)(O,O) - 1) 1 

(2d)*(2d - 1) (U)* (1.6) 

Recently Konno (1994, 1995) studied the asymptotic behaviour of the DCP for large D. 
He developed the comparison method which was used by Bramson et nl (1989) for another 
modified process of the BCP. Although the proof is rather lengthy, this method is powerful 
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for any dimensions d 2 1. He proved that ALo(D) - 1/2d N constant x v d ( D )  for large 
D with rpt(D) = D-]13,(02(D) = IiogDI/D and q d ( D )  = ~ D - '  ford 2 3. Since the 
local central limit theorem is used, the upper bound of ALd)(D) can only be obtained for 
sufficiently large D by this method. On the other hand, theorem 1.2 gives the upper bound 
for any D 2 0 and the asymptotic behaviour (1.5) is derived as a corollary. The numerical 
estimation (1.6) for the coeficient dd) is a new result (for example, 0.005 c d3) < 0.015 
for d = 3). 

By using the result of the l/d expansion of G"(0,O) (see, for example, Itzykson and 
Drouffe 1989, p 14), we can obtain another corollary of theorems 1.1 and 1.2 for large d. 

Corollary 1.4. (i) If D = 0, then 

with 

1 < C ]  $ 2  

(ii) If D z 0, then 

1 1 1  c2 
2d D (Zd)3 (2d)4 

Ay(,) = - + -- + - 
with 

D- 1 6 0  - 1 
< c  <- 

2D2 7, 2, 

(1.9) 

(1.10) 

Since (1.9) lacks the 1/(2d)' term, this corollary implies that the critical value ALd'(D) 
approaches the mean-field value 1/2d as d 4 00 more quickly when D z 0 than it does 
when D = 0. 

The paper is organized as follows. In section 2 the proof of theorem 1.2 is given. There 
we will derive a lower bound for the density of particles &,(A, D) for the survival phase, 
A > ALo(D), in theorem 2.2. Some remarks on the critical phenomena associated with 
p$,(A, D) are given in section 3 based on theorems 1.1, 1.2 and 2.2. 

2. Binary contact path process with exchange 

2.1. Griffeath's argument 

Griffeath (1983) introduced an interacting particle system called the binary contact path 
process (BCPP) and using it obtained the upper bound of the critical value and the lower 
bound of the density of particles in the survival phase for the BCP when the dimensionality 
d 3 3. In order to obtain the same kind of bounds for the diffusive case, DCP, we will 
study the BCPP with exchange and will follow his argument. Here we give a brief review 
of Griffeath's argument. 

At first we give a precise definition of the critical value ALd) for the BCP. Let y be 
the stationary distribution of the BCP & starting from the state with all sites occupied; 
Fo(x) = I .  'x  E Zd. We will represent such a state by St  as an abbreviation. Consider the 
density of particles in this stationary distribution 

(2.1) &&) = %.(E : F(x)  = 11 
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which is independent of x E Zd,  since y is translation invariant. It is easy to prove that 
pecp(A) is non-decreasing in A and we can define ALd) by 

(2.2) 
It is proved that any process becomes extinct with probability 1 if A < while if 
A z ALd) all processes starting from non-empty states have a positive probability of survival 
(see Liggett 1985 ch VI, Durrett 1991a). By definition ( 2 3 ,  a positive lower bound for 
p$?(h) gives an upper bound for 

The BCPP cr is an interacting particle system on Zd where more than one particle 
can exist on one site at the same time; & ( x )  E IO, 1,2, . . . I .  Let { N , ( t ) , x  E Z d )  be 
independent rate 1 Poisson processes. At every event time t of NI(,) for each site x E Zd, 
the configuration fit- is replaced by the following stochastic rules. At rate (1 + 2dA)- ' ,  
f i , - (x )  is replaced by 0, and for each of 2d neighbours y of x ,  fir-(y) is replaced by 
i , - ( y )  + & ( x )  at rate h(l + Wh)-'.  (Otherwise fir(z) = $:- (z ) . )  If we consider the 
projection I; given by 

(4 

hlf" = inf { 2 o : pgP(h)  z 0) . 

1 if f i t ( x )  t 0 
0 if f i : ( x )  = 0 I <tG) = 

then rr is the BCP except for a deterministic time change. Therefore if we consider rr starting 
from the state J1 and let p$ be the density of particles in the stationary distribution of this 
projected process <:! then we have 

,$AA) = P g d h ) .  (2.4) 

E' [ f i , (x ) ]  =ec' (2.5) 

We write the expectation value for the process starting from 61 as E'[ . ] .  It is easy to find 
that (see appendix A for detail) for any x E Zd 

with 
2 d h - 1  
1+2dA'  

c = -  

Therefore if we define the process qt by 

(2.6) 

This process qr is called the normalized BCPP (NBCPP for short). 

(see appendix B.l) can be applied and we have the following statement. If 
Since the NBCPP is a Markov process with (2.8). the martingale convergence theorem 

E'[qt(x)2] < 3M < 03 vt  3 0 vx E zd (2.9) 
then there exists a random variable qm E [O. 00) such that q I ( x )  converges to qm almost 
surely: 

V : ( X )  * 'Im as. as t --t w .  (2.10) 

By definitions (2.7) and (2.3). if we assume that A 2 1/2d and the initial states of the 
processes qr ,  f i r  and {r are all in 61, then &) > 0 + & ( x )  z 0 + Fr(x) = 1 for each 
t 2 0. Therefore, if we define 

(2.1 1) PfiCPP(I) = P(Vm ' 0) 
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then we have by (2.4) 

P A $ ~ ( ~ )  2 ~ % ~ ~ ( h ) .  
On the other hand, the CauchySchwarz inequality gives (see appendix B.2) 

Under conditions (2.8)-(2.10), it follows that (see appendix B.l) 

-E[vml = 1 

-E[&] 6 l$nnfE'[q,(x)*] < M .  
and 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Therefore if (2.9) holds for some h, then we obtain a positive lower bound for p&(h), 

which implies h 

2.2. NBCPPE $ 
We consider the binary contact path process with exchange (BCPPE for short) e?, where 
$p(x) E (0,1,2, .. .) for each x E Zd. Let ( N x ( f ) ,  x E Zd)  be independent rate 1 Poisson 
processes. At every event time t of N,( . )  for each site x E Zd, 6; is replaced by following: 
(i) at rate (1 + 2dh + 2dD)-' $ ( x )  is replaced by 0; (ii) for each of 2d neighbours y 
of x ,  f i F ( y )  is replaced by $?Cy) + $ ( x )  at rate h(1 + 2dh + 2dD)-';  (iii) and for 
each of 2d neighbours y of x ,  fip-(x) and $?(y) are exchanged by each other at rate 
D(l + 2dh + 2dD)-'. Otherwise i'jp(z) = $F(z). It is easy to see that 

~ ' [ i j P ( x ) ]  =e" (2.17) 
with 

- 2dh - 1 
1 + 2dh+ 2dD ' 

C =  (2.18) 

Next we define the process $ by 

and call q,? the normalized BCPPE (NBCPPE for short). Then 
$ ( x )  = e-"$(x) (2.19) 

E ' [ i f ( x ) ]  = 1 vx E zd Vf 2 0 .  (2.20) 
As explained in appendix A, the NBCPPE v,? is one of the class of interacting particle 

systems called the linear system (see Liggett 1985, ch IX). One of the reason why such 
systems are called the linear systems is that the time evolution of the second moments 
E @ [ i $ ( x ) q ~ ( O ) ]  starting from the aanslational invariant initial distribution fi  is determined 
only by the second moments. That is, we can derive the following equation for the NBCPPE 
qp starting from the state 81 (see appendix A for detail): 

Here q ( x ,  y)  is given by the following. 
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( 2 A + 4 D ) / ( 1  +ZdA++dD)  if x PO and Y # O  (2.22) 
2 h / ( l +  2dh + 2dD)  if x = O  or y = O .  q(x3 Y )  = 

When Ix - yI > 1 

(2.23) if Ixl=l  and y = - x  
otherwise 

And when x # 0 

q ( x ' x )  = I -(4dh + 8 d D ) / ( l +  2dh + 2dD) 

and 

(2.24) 
-[4dh + 2(4d - 1)D)/(1 + 2dh + 2dD) if 1x1 = 1 

if 1x1 > 1 

q(0,O) 1 - (4dh + 2 d D ) / ( 1 +  2dh + 2 d D ) .  (2.25) 

Such linearity does not hold in usual interacting particle systems. In the corresponding 
equation to (2.21) of the DCP the third moments appear in the right-hand side. The fourth 
moments appear in the equations for the third moments and so on. 

2.3. Upper bound for the second moment 

For the linear systems whose second moments evolve following (2.21), the following useful 
theorem is given in the textbook of Liggett (1985, theorem 3.12 on p 445). 

Theorem 2.1. Suppose that there is a strictly positive function h ( x )  on Zd such that 

lim h ( x )  = 1 (2.26) 
X" 

and 

Y 

Then 

E'[$@)'] < M 

for any x E Zd with 

(2.27) 

(2.28) 

(2.29) 

Pro05 Consider the function f (t. x )  for t E [O, CO) and x E Zd,  which is a solution of the 
equation 

(2.30) 

with the initial condition f (0, x ) .  We define q , ( x ,  y)  such that 

f ( k  x) = C4,(x9 Y)f (O!  Y ) .  (2.31) 
Y 

By using q l ( x ,  y) the solution of (2.21) is given by 

(2.32) 
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since E1[$(y)r7t(0)] = I for any y E Zd. Let x = 0, then (2.32) gives 

E 1 [ ~ m Z l  = CqdO, Y ) ,  (2.33) 

On the other hand, define h , ( x )  by the solution of (2.30) with the initial condition 

h l ( X )  = Cqr(x, Y)hly).  (2.34) 

Y 

f(0, x )  = h(x) :  

Y 

Under the condition (2.27) 

(2.35) 

In the same way we can show that 

'n> 1 (2.36) d" 
--h,(x)lt,o = 0 
dtn 

which implies h, (x )  = h ( x )  for any t 2 0. Therefore (2.34) gives 

C4&. Y M Y )  = h ( x )  'XEZd ' t 2 O .  (2.37) 
Y 

Let x = 0 in this equation, we have 

MO) = Cql(o, Y M Y )  2 Cqr(o, Y )  x infh(z). (2.38) 
Y Y 

Therefore if h ( x )  is strictly positive, 

(2.39) 

The inequality (2.28) with (2.29) follows (2.33) and (2.39) for any x E Zd, since E ' [ $ ( x ) * ]  
is independent of x E Zd by the translation invariance of the mechanics of the process and 
the initial state SI. U 

Now we try to find the function h ( x )  which satisfies the conditions of theorem 2.1. 
Because q ( x ,  y )  are given by (2.22)-(2.25) for the NBCPPE, (2.27) becomes [ a + 2dh)h(0)/4dh if x = O  

1 h ( ~ ) - ~  C h ( y ) =  D [ h ( x j - 2 h ( ~ ) + h ( - x ) ) / ( 2 d X + 4 d D )  if I X I =  I 
if 1x1 > 1 .  y:ly-Xl=l 

(2.40) 
We assume that d 3 3 and let G(d)(x, y )  be the Green function for the simple random walk 
on Zd which satisfies the following equations: 

G"(n, y )  = G q y ,  x )  

lim d d ) ( z .  x )  = o ~ 

and 

for any z with IzI c 03 
x+.m 

(2.41) 

(2.42) 

(2.43) 
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where &,? = 1 i f  x = y and = 0 if x # y. 
By condition (2.26) we assume that the solution of (2.40) is given in the form 

h ( x )  = 1 + a d d ) ( O ,  x )  + b GCd'(u, x )  (2.44) 
":IuI=I 

with some real a and b. Substituting (2.44) for h ( x )  in (2.40) and using (2.41) and (2.42), 
we obtain 

1 + 2D/h - - 
4dh( 1 + (2dh - 1)D/2dh2]/(1 + 2dh) - Ccd)(O, 0) 

and 

b = -  
d(h+2D)' 

If we put x = 0 in (2.41) and use (2.42), we have 

GCd'(y,  z )  = 2d(G'd)(0, z )  - &o). 
IYI=l  

Therefore (2.44) with (2.45) and (2.46) are rewritten as 

(2.45) 

(2.46) 

(2.47) 

1 + 2D/b 
4dh( 1 + (2dh - 1)D/2dh2)/(1 + 2dh) - G(d)(O, 0)  

h ( x )  = 1 + 
X- I (hG(d)(O, x )  + 2DS,,o} . (2.48) 

h + 2 D  
If 

4dh 2dh-  1 
1 + 2dh 

(2.49) 

then the function h ( x )  given by (2.48) is strictly positive and satisfies all the conditions of 
theorem 2.1. 

Since G(")(O, x )  is decreasing in 1x1, infy h(y) = limy+,h(y) = 1 by (2.43). Therefore 
when d 2 3 and (2.49) is satisfied, theorem 2.1 gives us the following upper bound of the 
second moment for the NBCPPE. 

E1[$(x)2] < 
for any x E Zd with 

4dh(h + 2 0 )  
2(2dh2 + (2dh - 1)D)  - h(1 + 2dh)G(d)(0, 0) 

<CO M = h(0) = 

(2.50) 

(2.51) 

2.4. Proof of theorem 1.2 

Let 
stationary distribution of the DCP 

be the DCP introduced in section 1 .  As in subsection 2.1, we define UIJ by the 
starting from the state 81 and define 

&,(h, D) = V ~ , D I F  : F ( X )  = 11 (2.52) 

for h 2 0, D 2 0. As for the BCP we can define the critical value hLd)(D) for each D 2 0 

(2.53) 
by 

A:)(@ = inf ( A  > 0 : pgp(A, D) > 0) .  
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We can prove that for each D 2 0 the DCP starting from any initial state becomes extinct 
with probability 1 i f  h < @ ) ( D )  but if h > hka(D) any DCP starting from non-empty 
initial state has a positive probability of survival forever. 

Following Griffeath‘s argument explained in subsection 2.1, the results obtained in 
subsection 2.3 gives the following theorem. 

Theorem 2.2. Assume that d 2 3. If h > hf’(D),  where hf’(D) is given by (l.3), then 
the condition (2.49) is satisfied and 

(2.54) P$&&, D )  2 pLd’(A, D )  > 0 

with 
1 

M pLd)(h, D) = - (2.55) 

where M is given by (2.51). 

By the definition (2.53) this implies hid)@) < h t ’ (D) .  

3. Comments on the critical phenomena for large D 

In this section we will give some comments on the critical phenomena of the DCP in d 2 3 
when the diffusion rate D is large. At first we consider the limit D + 00. We find that 

h(2dh f l)(G‘d)(O,O) - 1) 1 
D-bW lim pLd’(i, D )  = D - w  Iim - 2dh 4dh - [ l -  

2(2dh - 1) -+U(&)] D 

(3.1) 

On the other hand, it is easy to obtain the following upper bound for p$&(h,D) by 
comparing the DCP with the appropriate binary branching process: 

1 2dh - 1 
2 2dh ’ 

= -- 

for h 2 l j2d and D 2 0. Therefore we conclude that 

(3.3) 

for all h 2 1/2d. 

BCP by 
As usual we expect that the critical exponent ,9 is defined for the DCP as well as for the 

pfiP(h, D )  constant x (A - A ~ ~ ) ( D ) ) ~  (3.4) 
as h approaches the critical value hLd)(D) from the above. Generally speaking, @ would be 
a function of the diffusion rate D as well as of the dimensionality d ,  

B = B(d, D )  . (3.5) 
The result (3.3) implies that limD+wp$p(h, D )  = constant x (2dh - 1)/2dh and thus 
limD4m,!?(d, D )  = 1 (the mean-field value) for d a 3. This statement is not new. As a 
matter of fact, the following statement was proved, which is stronger than (3.3) (Durrett 
and Neuhauser 1994, Konno 1994). If h 2 1/2d, then pf& D )  -+ (?Ah - 1)/2dh as 
D - t w f o r a n y d 2  1. 
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1/2d ,@D) a 
Figure 2, A schematic picture of p$&(A. D )  n w  the critical value d'(D) for large D, when 
d = 3. (a)  In the region (3.7) with small values of C, p$,(A. D )  is zero. (b) In the intermediate 
region, very near to A.!d'(D), the critical phenomena which belong to the same universality class 
as the BCP should be observed. ( c )  In the region (3.7) with large values of C, p$p(A, D )  seems 
to behave as constant x LA - 1/?d). There would be thus the crossover From the BcPtype (b)  
to the mean-held-type (c). 

Next we consider the case when D >> 1 but D c W. Theorem 2.2 and (3.1) gives that 
there is a constant e (1 < .Q < CO) such that 

1 h(2dh + l)(G'd'(O, 0) - 1) 1 
4(2dh - 1) ->I D ~mp(h2  (d)  D )  2 2dh- [i - (? + e  

for large D when d 2 3. Here if we put 
1 c  

2d D 
A = - + -  

with some positive constant C ,  then we have 
2dh - 1 

~ o c p ( L  (4 D )  2 (1 -S'd'(C))- 2dh 
for large D, where 

1 (G"(0,O) - 1) 1 
2(2d)2 C 2 

- 8Cd)(c) = - +e'  

(3.7) 

(3.8) 

(3.9) 

with a constant 8'. Unfortunately &(d)(C) does not approach 0 as C + CO in OUT estimation 
(3.8). However, (3.9) gives that 1 - &cd)(C) > 0 for sufficiently large C. Therefore, (3.8) 
suggests that if we observe D )  at the values A given by (3.7) with sufficiently large 
values of C for large D ,  it seem to behave as constantx (261- 1)/2dh: the mean-field-type 
behaviour. On the other hand, corollary 1.3 implies that if we put C < {(X)'(2d - l)}-' 
in (3.7), then p$Jp(I, D )  -+ 0 as D -+ W. For the intermediate values of C ,  the critical 
phenomena governed by the critical point hL")(D) would be observed. 

As discussed by Jensen and D i c k "  (1993), it is expected that the diffusion rate D 
would be irrelevant for the critical phenomena: p(d, D )  = p(d, 0) for D c CO. The upper 
critical dimension d. would be 4 for the DCP as well as for the BCP. Our theorem suggests 
that at least when d = 3, we will observe the crossover from the critical phenomena of the 
BCP-type (,fJ zz 0.813, Jensen 1992) to those of the mean-field-type (@ = 1) for large D. 
Figure 2 illustrates the situation. 
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The crossover to the mean-field-type critical phenomena in some limit was first discussed 
rigorously for interacting particle systems by Bramson et a l  (1989). They studied another 
modified process of the BCP which can be viewed as a model of the growth of crabgrass. 
Recently, Konno (1994, 1995) applied their method to the DCP with large D and gave the 
lower bound of p$&,(h, D) in the form (3.8) for any dimensions d 2 1 with S")(C) such 
that 8'd)(C) + 0 as C + cu. His theorem suggests that the above discussed crossover will 
be observed in any dimensions less than d,. 
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Appendix A. The linear systems 

The linear system with values [O, 00)'~ are discussed in detail in the textbook of Liggett 
(1985, ch IX). Here we show some of the results given there which are used in section 2 
for readers' convenience. 

The linear systems y, on Zd will be defined by using a deterministic collection of 
numbers a ( x ,  y) for x ,  y E Zd and a collection of non-negative random variables A,@, U) 
with U ,  U E Zd for each x E Zd.  Let [N,(t) ,  x E Z d )  be independent rate one Poisson 
processes. At the ith event time f of N x ( . ) ,  the configuration yt- is repIaced by 

where (Af(u, U), U ,  U E Z d ]  are the replicas which have the same joint distribution as 
[A,@, U), U ,  U E Z d }  for each x E Zd and i = 1,2,3,, . . . Between event times of the 
Poisson processes, y~ evolves according to the following linear differential equations: 

The linear system y, defined above i s  a Markov process and we write the expectation of 
a function f ( y , )  of the configuration y, starting from the initial distribution ~r. by E @ [ f ( y r ) J .  
It is shown that the equation of motion for the expectation is given by the following: 

64.3) 
d 
--E"[f(yJl= E"[Qf(yr)l dt 

WY)  = ~ L W ( A X y ) l  - f(v)I + x f u ( y ) a ( u ,  U ) Y ( U )  

where Q is given by 

(A.4) 
x U , "  

and called the formal generator of the process, where 

(A,y) (u)  = CA&. VMJ) (A.5) 

and f u ( y )  = a f ( y ) / a y ( u ) .  Here E [ . ]  denotes the expectation with respect to the random 
variables (A&, U)]. 

Putting f(yJ = yr(x)  and f(y,) = y,(x)y,(O) in (A.3) gives the following equations of 
motion for the first and the second moments. 

" 
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Theorem A . I .  (Theorem 1.27 on p 431 md theorem 3.1 on p 442 of Liggett 1985). Assume 
that the initial distribution p is translation invariant. Then 

with 

if x # y  

if x = y  
(-4.7) 

for x # y (A.9) 

and with 

The binary contact path process with exchange (BCPPE) 4: is the linear system in which 
a(x, y )  = 0 for all x ,  y E Zd, and for each x E Zd, 

1 if u = u # x  

0 otherwise A,(u, U) = 

with probability (1 + 2dk + 2dD)-’ ,  and for each of the 2d neighbours y of x 

if U = U ,  or if U = y and U = x 
U) = i:, otherwise 

with probability h/(l $: 2dh + 2dD) and 

(A.ll) 

(A.12) 

if U # x ,  U # x ,  U = U, or if (U, U) = ( x .  y ) ,  or if ( U ,  U) = ( y ,  X) 
otherwise A.r(u, U) = 

(A.13) 
with probability D/(1 + 2dh + 2dD). 

The normalized BCPPE (NBCPPE) 7: is the one which is modified by setting 

(A.14) (1-2dh)/(l+2dh+2dD) if x = y  
Q ( x g Y ) =  0 otherwise. I 

Following theorem A.l we can obtain (2.17) with (2.18), (2.20) and (2.21)-(2.25). The 
processes 4, and qt in subsection 2.1 are the special cases for D = 0 of the processes 4: 
and q:, respectively. 

Appendix B. Some probability theorems 

In this appendix we will list the fundamental theorems of the probability theory which we 
use in the subsection 2.1. For proofs and more detail, see Grimmett and Stirzaker (1992) 
or Durrett (1991b), for example. 
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B. 1. Martingale convergence theorem 

As explained in appendix A, the NBCPP qt is given by (A. l l t (A.14)  with D = 0. Since 
E, s(x, y) = 0 by (A.7) for this process, we have 

d 
--E"vr(x)l = o  (B.1) dt 

if the initial distribution /L is translation invariant. Here we define & by & = the collection 
of all events which happened before the times. Then by the Markov property of the process 
and by (B.l), we can conclude that 

Ep[qr(x)13,1 = d x )  for s < t s, I E CO, w) (B.2) 
if /L is translation invariant, where E'[.13,1 denotes the conditional expectation given Fy, 
That is, the expectation of qI(x) is determined to be a constant, although qt(x) is a random 
variable. Such a process is said to be a martingale. 

Theorem B.1. If IS,) is a martingale with E [ S i ]  < 00 for all n, then there exists a random 
variable S such that S, converges to S almost surely. 

It can be proved that such a martingale with finite second moments has an additional 
property called the uniform integrability and that the expectation also converges as 

For a random series [&), the following convergence theorem is known. 

E[&] -+ E [ S ]  as n + 03. (B.3) 
Applying above theorems, we obtain (2.10) and (2.14) under the condition (2.9) for the 

0, 

E[liminfX.] < liminfE[X.]. (B.4) 

Since liminf,,mqr(.r)Z = q& by (2.10), E[&] < limt,,E1[qt(x)Z] < M, where we 

NBCPP. In order to prove (215) we use Fatou's lemma. 

Lemnta B.1 (Fatou's lemma). If {Xn] is a sequence of random variables such that X, 
then 

n-+m n-m 

have used (2.9). 

8.2 .  Cauchy-Schwarz inequalig 

It is easy to prove the following inequality called the Cauchy-Schwarz inequality for random 
variables X and Y ,  

(h[XYI)Z < E[XZ]E[Y*] (B.5) 
We put X = qm and Y = llnm,o,. Here I A  denotes the indicator function of A ,  which 

gives 1 if A occurs and gives 0 otherwise. Then E[XY] = E[qml(nm,~tl = E[qm] since 
7- > 0. And we observe that Elyz] = E[ll,,+ot] = P(qm > 0) pNBCPP(h) by definition 
2.11. Therefore (B.5) gives (2.13). 

(4 
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